Контакты
Главный девиз нашей строительной компании!
Строительство дома - важнейшее событие в жизни любого человека. Когда мы строим дом, мы вкладываем не только время и деньги, но и частичку души. Поэтому, жилье всегда будет отражением своего владельца. Дом - это место где мы нужны и желанны, дом - наша крепость и убежище, дом - символ достатка и благополучия.

Главная Новости

Прямой изгиб Плоский поперечный изгиб

Опубликовано: 04.10.2018

Прямой изгиб. Плоский поперечный изгиб Построение эпюр внутренних силовых факторов для балок Построение эпюр Q и М по уравнениям Построение эпюр Q и М по характерным сечениям (точкам) Расчёты на прочность при прямом изгибе балок Главные напряжения при изгибе. Полная проверка прочности балок Понятие о центре изгиба Определение перемещений в балках при изгибе. Понятия деформации балок и условия их жёсткости Дифференциальное уравнение изогнутой оси балки Метод непосредственного интегрирования Примеры определения перемещений в балках методом непосредственного интегрирования Физический смысл постоянных интегрирования Метод начальных параметров (универсальное уравнение изогнутой оси балки). Примеры определения перемещений в балке по методу начальных параметров Определение перемещений по методу Мора. Правило А.К. Верещагина . Вычисление интеграла Мора по правилу А.К. Верещагина Примеры определения перемещений посредством интеграла Мора Библиографический список Прямой изгиб. Плоский поперечный изгиб. 1.1. Построение эпюр внутренних силовых факторов для балок Прямым изгибом называется такой вид деформации, при котором в поперечных сечениях стержня возникают два внутренних силовых фактора: изгибающий момент и поперечная сила. В частном случае, поперечная сила может быть равна нулю, тогда изгиб называется чистым. При плоском поперечном изгибе все силы расположены в одной из главных плоскостей инерции стержня и перпендикулярны его продольной оси, в той же плоскости расположены моменты (рис. 1.1, а,б). Рис. 1.1 Поперечная сила в произвольном поперечном сечении балки численно равна алгебраической сумме проекций на нормаль к оси балки всех внешних сил, действующих по одну сторону от рассматриваемого сечения. Поперечная сила в сечении m-n балки (рис. 1.2, а) считается положительной, если равнодействующая внешних сил слева от сечения направлена вверх, а справа – вниз, и отрицательной – в противоположном случае (рис. 1.2, б). Рис. 1.2 Вычисляя поперечную силу в данном сечении, внешние силы, лежащие слева от сечения, берут со знаком плюс, если они направлены вверх, и со знаком минус, если вниз. Для правой части балки – наоборот. 5 Изгибающий момент в произвольном поперечном сечении балки численно равен алгебраической сумме моментов относительно центральной оси z сечения всех внешних сил, действующих по одну сторону от рассматриваемого сечения. Изгибающий момент в сечении m-n балки (рис. 1.3, а) считается положительным, если равнодействующий момент внешних сил слева от сечения направлен по стрелке часов, а справа – против часовой стрелки, и отрицательным – в противоположном случае (рис. 1.3, б). Рис. 1.3 При вычислении изгибающего момента в данном сечении моменты внешних сил, лежащие слева от сечения, считаются положительными, если они направлены по ходу часовой стрелки. Для правой части балки – наоборот. Удобно определять знак изгибающего момента по характеру деформации балки. Изгибающий момент считается положительным, если в рассматриваемом сечении отсечённая часть балки изгибается выпуклостью вниз, т. е. растягиваются нижние волокна. В противоположном случае изгибающий момент в сечении отрицательный. Между изгибающим моментом М, поперечной силой Q и интенсивностью нагрузки q существуют дифференциальные зависимости. 1. Первая производная от поперечной силы по абсциссе сечения равна интенсивности распределенной нагрузки, т.е. . (1.1) 2. Первая производная от изгибающего момента по абсциссе сечения равна поперечной силе, т. е. . (1.2) 3. Вторая производная по абсциссе сечения равна интенсивности распределённой нагрузки, т. е. . (1.3) Распределенную нагрузку, направленную вверх, считаем положительной. Из дифференциальных зависимостей между М, Q, q вытекает ряд важных выводов: 1. Если на участке балки: а) поперечная сила положительна, то изгибающий момент возрастает; б) поперечная сила отрицательна, то изгибающий момент убывает; в) поперечная сила равна нулю, то изгибающий момент имеет постоянное значение (чистый изгиб); 6 г) поперечная сила проходит через нуль, меняя знак с плюса на минус, max M M, в противоположном случае M Mmin. 2. Если на участке балки распределенная нагрузка отсутствует, то поперечная сила постоянна, а изгибающий момент изменяется по линейному закону. 3. Если на участке балки имеется равномерно распределенная нагрузка, то поперечная сила изменяется по линейному закону, а изгибающий момент – по закону квадратной параболы, обращенной выпуклостью в сторону действия нагрузки (в случае построения эпюры М со стороны растянутых волокон). 4. В сечении под сосредоточенной силой эпюра Q имеет скачок (на величину силы), эпюра М — излом в сторону действия силы. 5. В сечении, где приложен сосредоточенный момент, эпюра М имеет скачок, равный значению этого момента. На эпюре Q это не отражается. При сложном нагружении балки строят эпюры поперечных сил Q и изгибающих моментов М. Эпюрой Q(M) называется график, показывающий закон изменения поперечной силы (изгибающего момента) по длине балки. На основе анализа эпюр М и Q устанавливают опасные сечения балки. Положительные ординаты эпюры Q откладываются вверх, а отрицательные – вниз от базисной линии, проводимой параллельно продольной оси балки. Положительные ординаты эпюры М откладываются вниз, а отрицательные – вверх, т. е. эпюра М строится со стороны растянутых волокон. Построение эпюр Q и М для балок следует начинать с определения опорных реакций. Для балки с одним защемленным и другим свободным концами построение эпюр Q и М можно начинать от свободного конца, не определяя реакций в заделке. 1.2. Построение эпюр Q и М по уравнениям Балка разбивается на участки, в пределах которых функции для изгибающего момента и поперечной силы остаются постоянными (не имеют разрывов). Границами участков служат точки приложения сосредоточенных сил, пар сил и места изменения интенсивности распределенной нагрузки. На каждом участке берется произвольное сечение на расстоянии х от начала координат, и для этого сечения составляются уравнения для Q и М. По этим уравнениям строятся эпюры Q и M. Пример 1.1 Построить эпюры поперечных сил Q и изгибающих моментов М для заданной балки (рис. 1.4,а). Решение: 1. Определение реакций опор. Составляем уравнения равновесия: из которых получаем Реакции опор определены правильно. Балка имеет четыре участка Рис. 1.4 нагружения: СА, AD, DB, BE. 2. Построение эпюры Q. Участок СА. На участке СА  1проводим произвольное сечение 1-1 на расстоянии x1 от левого конца балки. Определяем Q как алгебраическую сумму всех внешних сил, действующих слева от сечения 1-1: Знак минус взят потому, что сила, действующая слева от сечения, направлена вниз. Выражение для Q не зависит от переменной x1. Эпюра Q на этом участке изобразится прямой, параллельной оси абсцисс. Участок AD. На участке проводим произвольное сечение 2-2 на расстоянии x2 от левого конца балки. Определяем Q2 как алгебраическую сумму всех внешних сил, действующих слева от сечения 2-2: 8 Величина Q постоянна на участке (не зависит от переменной x2 ). Эпюра Q на участке представляет собой прямую, параллельную оси абсцисс. Участок DB. На участке проводим произвольное сечение 3-3 на расстоянии x3 от правого конца балки. Определяем Q3 как алгебраическую сумму всех внешних сил, действующих справа от сечения 3-3: Полученное выражение есть уравнение наклонной прямой линии. Участок BE. На участке проводим сечение 4-4 на расстоянии x4 от правого конца балки. Определяем Q как алгебраическую сумму всех внешних сил, действующих справа от сечения 4-4: 4 Здесь знак плюс взят потому, что равнодействующая нагрузка справа от сечения 4-4 направлена вниз. По полученным значениям строим эпюры Q (рис. 1.4, б). 3. Построение эпюры М. Участок м1. Определяем изгибающий момент в сечении 1-1 как алгебраическую сумму моментов сил, действующих слева от сечения 1-1. – уравнение прямой. Участок A 3Определяем изгибающий момент в сечении 2-2 как алгебраическую сумму моментов сил, действующих слева от сечения 2-2. – уравнение прямой. Участок DB 4Определяем изгибающий момент в сечении 3-3 как алгебраическую сумму моментов сил, действующих справа от сечения 3-3. – уравнение квадратной параболы. 9 Находим три значения на концах участка и в точке с координатой xk , где Участок BE 1Определяем изгибающий момент в сечении 4-4 как алгебраическую сумму моментов сил, действующих справа от сечения 4-4. – уравнение квадратной параболы находим три значения M4: По полученным значениям строим эпюру М (рис. 1.4, в). На участках CA и AD эпюра Q ограничена прямыми, параллельными оси абсцисс, а на участках DB и BE – наклонными прямыми. В сечениях C, A и B на эпюре Q имеют место скачки на величину соответствующих сил, что служит проверкой правильности построения эпюры Q. На участках, где Q  0, моменты возрастают слева направо. На участках, гдеQ  0, моменты убывают. Под сосредоточенными силами имеются изломы в сторону действия сил. Под сосредоточенным моментом имеет место скачок на величину момента. Это указывает на правильность построения эпюры М. Пример 1.2 Построить эпюры Q и М для балки на двух опорах, нагруженной распределенной нагрузкой, интенсивность которой меняется по линейному закону (рис. 1.5, а). Решение Определение реакций опор. Равнодействующая распределенной нагрузки равна площади треугольника, представляющего собой эпюру нагрузки и приложена в центре тяжести этого треугольника. Составляем суммы моментов всех сил относительно точек А и В: Построение эпюры Q. Проведем произвольное сечение на расстоянии x от левой опоры. Ордината эпюры нагрузки, соответствующая сечению, определяется из подобия треугольников Равнодействующая той части нагрузки, которая распложена слева от сечения Поперечная сила в сечении равна Поперечная сила изменяется по закону квадратной параболы Приравнивая уравнение поперечной силы нулю, находим абсциссу того сечения, в котором эпюра Q переходит через нуль: Эпюра Q представлена на рис. 1.5, б. Изгибающий момент в произвольном сечении равен Изгибающий момент изменяется по закону кубической параболы: Максимальное значение изгибающий момент имеет в сечении, где  0, т. е. при Эпюра М представлена на рис. 1.5, в. 1.3. Построение эпюр Q и M по характерным сечениям (точкам) Используя дифференциальные зависимости между М, Q, q и выводы, вытекающие из них, целесообразно строить эпюры Q и М по характерным сечениям (без составления уравнений). Применяя этот способ, вычисляют значения Q и М в характерных сечениях. Характерными сечениями являются граничные сечения участков, а также сечения, где данный внутренний силовой фактор имеет экстремальное значение. В пределах между характерными сечениями очертание 12 эпюры устанавливается на основе дифференциальных зависимостей между М, Q, q и выводами, вытекающими из них. Пример 1.3 Построить эпюры Q и М для балки, изображенной на рис. 1.6, а. Рис. 1.6. Решение: Построение эпюр Q и М начинаем от свободного конца балки, при этом реакции в заделке можно не определять. Балка имеет три участка нагружения: АВ, ВС, CD. На участках АВ и ВС распределенная нагрузка отсутствует. Поперечные силы постоянны. Эпюра Q ограничена прямыми, параллельными оси абсцисс. Изгибающие моменты изменяются по линейному закону. Эпюра М ограничена прямыми, наклонными к оси абсцисс. На участке CD имеется равномерно распределенная нагрузка. Поперечные силы изменяются по линейному закону, а изгибающие моменты – по закону квадратной параболы с выпуклостью в сторону действия распределенной нагрузки. На границе участков АВ и ВС поперечная сила изменяется скачкообразно. На границе участков ВС и CD скачкообразно изменяется изгибающий момент. 1. Построение эпюры Q. Вычисляем значения поперечных сил Q в граничных сечениях участков: По результатам расчетов строим эпюру Q для балки (рис. 1, б). Из эпюры Q следует, что поперечная сила на участке CD равна нулю в сечении, отстоящем на расстоянии qa a q  от начала этого участка. В этом сечении изгибающий момент имеет максимальное значение. 2. Построение эпюры М. Вычисляем значения изгибающих моментов в граничных сечениях участков: При мaаксимальный момент на участке По результатам расчетов строим эпюру М (рис. 5.6, в). Пример 1.4 По заданной эпюре изгибающих моментов (рис. 1.7, а) для балки (рис. 1.7, б) определить действующие нагрузки и построить эпюру Q. Кружком обозначена вершина квадратной параболы. Решение: Определим нагрузки, действующие на балку. Участок АС загружен равномерно распределённой нагрузкой, так как эпюра М на этом участке – квадратная парабола. В опорном сечении В к балке приложен сосредоточенный момент, действующий по часовой стрелке, так как на эпюре М имеем скачок вверх на величину момента. На участке СВ балка не нагружена, т. к. эпюра М на этом участке ограничена наклонной прямой. Реакция опоры В определяется из условия, что изгибающий момент в сечении С равен нулю, т. е. Для определения интенсивности распределенной нагрузки составим выражение для изгибающего момента в сечении А как сумму моментов сил справа и приравняем к нулю Теперь определим реакцию опоры А. Для этого составим выражение для изгибающих моментов в сечении как сумму моментов сил слева Расчетная схема балки с нагрузкой показана на рис. 1.7, в. Начиная с левого конца балки, вычисляем значения поперечных сил в граничных сечениях участков: Эпюра Q представлена на рис. 1.7, г. Рассмотренная задача может быть решена путем составления функциональных зависимостей для М, Q на каждом участке. Выберем начало координат на левом конце балки. На участке АС эпюра М выражается квадратной параболой, уравнение которой имеет вид Постоянные а, b, с находим из условия, что парабола проходит через три точки с известными координатами: Подставляя координаты точек в уравнение параболы, получим: Выражение для изгибающего момента будет Дифференцируя функцию М1, получим зависимость для поперечной cилы После дифференцирования функции Q получим выражение для интенсивности распределённой нагрузки На участке СВ выражение для изгибающего момента представляется в виде линейной функции Для определения постоянных а и b используем условия, что данная прямая проходит через две точки, координаты которых известны Получим два уравнения:  ,b из которых имеем a  20. Уравнение для изгибающего момента на участке СВ будет После двукратного дифференцирования М2 найдём По найденным значениям М и Q строим эпюры изгибающих моментов и поперечных сил для балки. Помимо распределённой нагрузки к балке прикладываются сосредоточенные силы в трех сечениях, где на эпюре Q имеются скачки и сосредоточенные моменты в том сечении, где на эпюре М имеется скачок. Пример 1.5 Для балки (рис. 1.8, а) определить рациональное положение шарнира С, при котором наибольший изгибающий момент в пролете равен изгибающему моменту в заделке (по абсолютной величине). Построить эпюры Q и М. Решение Определение реакций опор. Несмотря на то, что общее число опорных связей равно четырем, балка статически определима. Изгибающий момент в шарнире С равен нулю, что позволяет составить дополнительное уравнение: сумма моментов относительно шарнира всех внешних сил, действующих по одну сторону от этого шарнира, равна нулю. Составим сумму моментов всех сил справа от шарнира С. Эпюра Q для балки ограничена наклонной прямой, так как q = const. Определяем значения поперечных сил в граничных сечениях балки: Абсцисса xK сечения, где Q = 0, определяется из уравнения откуда Эпюра М для балки ограничена квадратной параболой. Выражения для изгибающих моментов в сечениях, где Q = 0, и в заделке записываются соответственно так: Из условия равенства моментов получаем квадратное уравнение относительно искомого параметра х: Реальное значение x2x 1,029 м. Определяем численные значения поперечных сил и изгибающих моментов в характерных сечениях балки На рис.1.8, б показана эпюра Q, а на рис. 1.8, в – эпюра М. Рассмотренную задачу можно было решить способом расчленения шарнирной балки на составляющие ее элементы, как это показано на рис. 1.8, г. В начале определяются реакции опор VC и VB . Строятся эпюры Q и М для подвесной балки СВ от действия приложенной к ней нагрузки. Затем переходят к основной балке АС, нагрузив ее дополнительной силой VC , являющейся силой давления балки СВ на балку АС. После чего строят эпюры Q и М для балки АС. 1.4. Расчеты на прочность при прямом изгибе балок Расчет на прочность по нормальным и касательным напряжениям. При прямом изгибе балки в поперечных сечениях ее возникают нормальные и касательные напряжения (рис. 1.9). 18 Рис. 1.9 Нормальные напряжения связаны с изгибающим моментом, касательные напряжения связаны с поперечной силой. При прямом чистом изгибе касательные напряжения равны нулю. Нормальные напряжения в произвольной точке поперечного сечения балки определяются по формуле (1.4) где M – изгибающий момент в данном сечении; Iz – момент инерции сечения относительно нейтральной оси z; y – расстояние от точки, где определяется нормальное напряжение, до нейтральной оси z. Нормальные напряжения по высоте сечения изменяются по линейному закону и достигают наибольшей величины в точках, наиболее удалённых от нейтральной оси Если сечение симметрично относительно нейтральной оси (рис. 1.11), то Рис. 1.11 наибольшие растягивающие и сжимающие напряжения одинаковы и определяются по формуле ,  – осевой момент сопротивления сечения при изгибе. Для прямоугольного сечения шириной b высотой h : (1.7) Для круглого сечения диаметра d : (1.8) Для кольцевого сечения   – соответственно внутренний и наружный диаметры кольца. Для балок из пластичных материалов наиболее рациональными являются симметричные 20 формы сечений (двутавровое, коробчатое, кольцевое). Для балок из хрупких материалов, не одинаково сопротивляющихся растяжению и сжатию, рациональными являются сечения, несимметричные относительно нейтральной оси z (тавр., П-образное, несимметричный двутавр). Для балок постоянного сечения из пластичных материалов при симметричных формах сечений условие прочности записывается так: (1.10) где Mmax – максимальный изгибающий момент по модулю;  – допускаемое напряжение для материала. Для балок постоянного сечения из пластичных материалов при несимметричных формах сечений условие прочности записывается в следующем виде: (1.11) Для балок из хрупких материалов с сечениями, несимметричными относительно нейтральной оси, в случае, если эпюра М однозначна (рис. 1.12), нужно записать два условия прочности – расстояния от нейтральной оси до наиболее удалённых точек соответственно растянутой и сжатой зон опасного сечения; P  – допускаемые напряжения соответственно на растяжение и сжатие. Рис.1.12. 21 Если эпюра изгибающих моментов имеет участки разных знаков (рис. 1.13), то помимо проверки сечения 1-1, где действуетMmax, необходимо произвести расчет по наибольшим растягивающим напряжениям для сечения 2-2 (с наибольшим моментом противоположного знака). Рис. 1.13 Наряду с основным расчетом по нормальным напряжениям в ряде случаев приходится делать проверку прочности балки по касательным напряжениям. Касательные напряжения в балки вычисляются по формуле Д. И. Журавского (1.13) где Q – поперечная сила в рассматриваемом поперечном сечении балки; Szотс – статический момент относительно нейтральной оси площади части сечения, расположенной по одну сторону прямой, проведенной через данную точку и параллельной оси z; b – ширина сечения на уровне рассматриваемой точки; Iz – момент инерции всего сечения относительно нейтральной оси z. Во многих случаях максимальные касательные напряжения возникают на уровне нейтрального слоя балки (прямоугольник, двутавр, круг). В таких случаях условие прочности по касательным напряжениям записывается в виде  , (1.14) где Qmax – наибольшая по модулю поперечная сила; – допускаемое касательное напряжение для материала. Для прямоугольного сечения балки условие прочности имеет вид (1.15) А – площадь поперечного сечения балки. Для круглого сечения условие прочности представляется в виде (1.16) Для двутаврового сечения условие прочности записывается так: (1.17) где Szо,тmсax – статический момент полусечения относительно нейтральной оси; d – толщина стенки двутавра. Обычно размеры поперечного сечения балки определяются из условия прочности по нормальным напряжениям. Проверка прочности балок по касательным напряжениям производится в обязательном порядке для коротких балок и балок любой длинны, если вблизи опор имеются сосредоточенные силы большой величины, а также для деревянных, клёпанных и сварных балок. Пример 1.6 Проверить прочность балки коробчатого сечения (рис. 1.14) по нормальным и касательным напряжениям, если МПа. Построить эпюры в опасном сечении балки. Рис. 1.14 Решение 23 1. Построение эпюр Q и М по характерным сечениям. Рассматривая левую часть балки, получим Эпюра поперечных сил представлена на рис. 1.14,в. Эпюра изгибающих моментов показана на рис. 5.14, г. 2. Геометрические характеристики поперечного сечения 3. Наибольшие нормальные напряжения в сечение С, где действует Mmax (по модулю):  МПа. Максимальные нормальные напряжения в балке практически равны допускаемым. 4. Наибольшие касательные напряжения в сечении С (или А), где действует max Q (по модулю): Здесь – статический момент площади полусечения относительно нейтральной оси; b2 см – ширина сечения на уровне нейтральной оси. 5. Касательные напряжения в точке (в стенке) в сечении С: Рис. 1.15 Здесь Szomc 834,5 108 см3 – статический момент площади части сечения, расположенной выше линии, проходящей через точку K1; b2 см – толщина стенки на уровне точки K1. Эпюры  и  для сечения С балки показаны рис. 1.15. Пример 1.7 Для балки, показанной на рис. 1.16, а, требуется: 1. Построить эпюры поперечных сил и изгибающих моментов по характерным сечениям (точкам). 2. Определить размеры поперечного сечения в виде круга, прямоугольника и двутавра из условия прочности по нормальным напряжениям, сравнить площади сечений. 3. Проверить подобранные размеры сечений балок по касательным напряжения. Дано: Решение: 1. Определяем реакции опор балки Проверка: 2. Построение эпюр Q и М. Значения поперечных сил в характерных сечениях балки 25 Рис. 1.16 На участках CA и AD интенсивность нагрузки q = const. Следовательно, на этих участках эпюра Q ограничивается прямыми, наклонными к оси. На участке DB интенсивность распределенной нагрузки q = 0, следовательно, на этом участке эпюра Q ограничивается прямой, параллельной оси х. Эпюра Q для балки показана на рис. 1.16,б. Значения изгибающих моментов в характерных сечениях балки: На втором участке определяем абсциссу x2 сечения, в котором Q = 0: Максимальный момент на втором участке Эпюра М для балки показана на рис. 1.16, в. 2. Составляем условие прочности по нормальным напряжениям откуда определяем требуемый осевой момент сопротивления сечения из выражения определяемый требуемый диаметр d балки круглого сечения Площадь круглого сечения Для балки прямоугольного сечения Требуемая высота сечения Площадь прямоугольного сечения Определяем требуемый номер двутавровой балки. По таблицам ГОСТ 8239-89 находим ближайшее большее значение осевого момента сопротивления  597см3, которое соответствует двутавру № 33 с характеристиками: A z 9840 см4. Проверка на допуск: (недогрузка на 1 % от допустимого 5 %) ближайший двутавр № 30 (W 2 см3) приводит к значительной перегрузке (более 5%). Окончательно принимаем двутавр № 33. Сравниваем площади круглого и прямоугольного сечений с наименьшей площадью А двутавра: Из трех рассмотренных сечений наиболее экономичным является двутавровое сечение. 3. Вычисляем наибольшие нормальные напряжения в опасном сечении 27 двутавровой балки (рис. 1.17, а): Нормальные напряжения в стенке около полки двутаврового сечения балки Эпюра нормальных напряжений в опасном сечении балки показана на рис. 1.17, б. 5. Определяем наибольшие касательные напряжения для подобранных сечений балки. а) прямоугольное сечение балки: б) круглое сечение балки: в) двутавровое сечение балки: Касательные напряжения в стенке около полки двутавра в опасном сечении А (справа) (в точке 2): Эпюра касательных напряжений в опасных сечениях двутавра показана на рис. 1.17,в. Максимальные касательные напряжения в балке не превышают допускаемых напряжений Пример 1.8 Определить допускаемую нагрузку на балку (рис. 1.18, а), если60МПа, размеры поперечного сечения заданы (рис. 1.19, а). Построить эпюру нормальных напряжений в опасном сечении балки при допускаемой нагрузке. Рис 1.18 1. Определение реакций опор балки. Ввиду симметрии системы 2. Построение эпюр Q и M по характерным сечениям. Поперечные силы в характерных сечениях балки: Эпюра Q для балки показана на рис. 5.18, б. Изгибающие моменты в характерных сечениях балки Для второй половины балки ординаты М – по осям симметрии. Эпюра М для балки показана на рис. 1.18, б. 3.Геометрические характеристики сечения (рис. 1.19). Разбиваем фигуру на два простейших элемента: двутавр – 1 и прямоугольник – 2. Рис. 1.19 По сортаменту для двутавра № 20 имеем Для прямоугольника: Статический момент площади сечения относительно оси z1 Расстояние от оси z1 до центра тяжести сечения Момент инерции сечения относительно главной центральной оси z всего сечения по формулам перехода к параллельным осям 4. Условие прочности по нормальным напряжениям для опасной точки «а» (рис. 1.19) в опасном сечении I (рис. 1.18): После подстановки числовых данных 5. При допускаемой нагрузке  в опасном сечении нормальные напряжения в точках «а» и «b» будут равны: Эпюра нормальных напряжений для опасного сечения 1-1 показана на рис. 1.19, б.


rss